Как найти эффективную ширину спектра

Эффективная длительность и эффективная ширина спектра сигнала

Литература: [Л.1], с 50-51

Для решения практических задач радиотехники крайне важно знать значения длительности и ширины спектра сигнала, а также соотношение между ними. Знание длительности сигнала позволяет решать задачи эффективного использования времени, предоставляемого для передачи сообщений, а знание ширины спектра – эффективного использования диапазона радиочастот.

Решение указанных задач требует строгого определения понятий «эффективная длительность» и «эффективная ширина спектра». На практике существует большое число подходов к определению длительности. В том случае, когда сигнал ограничен во времени (финишный сигнал), как это имеет место, например, для прямоугольного импульса, определение длительности не встречает затруднений. Иначе обстоит дело, когда теоретически сигнал имеет бесконечную длительность, например, экспоненциальный импульс

В этом случае в качестве эффективной длительности может быть принят интервал времени , в течение которого значение сигнала . При другом способе в качестве выбирают интервал времени, в течение которого . То же самое можно сказать и в отношении определения эффективной ширины спектра .

Хотя в дальнейшем, некоторые из этих способов будут использоваться при анализе радиотехнических сигналов и цепей, следует отметить, что выбор способа существенно зависит от формы сигнала и структуры спектра. Так для экспоненциального импульса более предпочтителен первый из указанных способов, а для сигнала колоколообразной формы – второй способ.

Более универсальным является подход, использующий энергетические критерии. При таком подходе в качестве эффективной длительности и эффективной ширины спектра рассматриваются соответственно интервал времени и диапазон частот, в пределах которых сосредоточена подавляющая часть энергии сигнала

, (2.52)

, (2.53)

где – коэффициент, показывающий, какая часть энергии сосредоточена в интервалах или . Обычно величину выбирают в пределах .

Применим критерии (2.52) и (2.53) для определения длительности и ширины спектра прямоугольного и экспоненциального импульсов. Для прямоугольного импульса вся энергия сосредоточена в интервале времени или , поэтому его длительность . Что касается эффективной ширины спектра, то установлено, что более 90% энергии импульса сосредоточено в пределах первого лепестка спектра. Если рассматривать односторонний (физический) спектр импульса, то ширина первого лепестка спектра составляет в круговых частотах или в циклических частотах. Отсюда следует, что эффективная ширина спектра прямоугольного импульса равна

или .

Перейдем к определению и экспоненциального импульса. Полная энергия импульса составляет

.

Воспользовавшись (2.52), получим

.

Вычислив интеграл в левой части уравнения и решив его, можно прийти к следующему результату

.

Спектр экспоненциального импульса найдем, воспользовавшись преобразованием Фурье

,

.

Подставляя это выражение в (2.53) и решая уравнение, получим

.

Найдем произведение эффективной длительности на эффективную ширину спектра. Для прямоугольного импульса это произведение составляет

,

или для циклических частот

.

Для экспоненциального импульса

.

Таким образом, произведение эффективной длительности на эффективную ширину спектра одиночного сигнала есть постоянная величина, зависящая только от формы сигнала и величины коэффициента . Это означает, что при уменьшении длительности сигнала его спектр расширяется и наоборот. Этот факт уже отмечался пи рассмотрении свойства (2.46) преобразования Фурье. На практике это означает, что невозможно сформировать короткий сигнал, обладающий узким спектром, что является проявлением физического принципа неопределенности.

Источник: Медиченко М.П., Литвинов В.П. Радиотехнические цепи и сигналы: Учебное пособие. – М.: Изд-во МГОУ, 2011.

Источник

Определение сигнала восьмизначным равномерным кодом (11101001). Расчет ЛИС-цепи , страница 2

Для перехода описания сигнала во времени к описанию в частотной области используют прямое преобразование Фурье:

Таким образом, одиночный импульс, заданный на всей бесконечной оси времени, имеет сплошной спектр в виде непрерывной функции частоты , которая называется спектральной плотностью.

Значение спектральной плотности прямоугольного импульса находится из формулы:

Используем, одну из основных теорем о спектрах: теорему о спектре сигнала смещённого во времени :

Найдём длительность и задержку исходного сигнала:

Тогда выражение для спектральной плотности будет иметь вид:

Построим АЧХ и ФЧХ для функции спектральной плотности:

График модуля спектральной плотности сигнала

График аргумента спектральной плотности сигнала

· Найти спектр периодической последовательности, полученной повторением данного сигнала, относительно комплексного базиса Фурье, построить амплитудную и фазовую спектральные диаграммы

Рассмотрим непериодический сигнал конечной длительности . Спектральная плотность сигнала определяется выражением прямого преобразования Фурье:

Повторение финитного сигнала с периодом , большим, чем длительность , дает периодический сигнал , который в силу своей периодичности может быть представлен рядом Фурье со спектральными коэффициентами, определяемыми выражением:

Сравнивая последние два равенства и учитывая, что интеграл в бесконечных пределах от финитной функции равен интегралу по интервалу, содержащему носитель функции, можно записать равенство:

Таким образом, спектральная плотность импульсного сигнала имеет форму огибающей спектральных коэффициентов ряда Фурье периодической последовательности, образованной повторением данного импульсного сигнала с произвольным периодом.

Коэффициенты ряда Фурье даже для вещественного сигнала в общем случае являются комплексными. Для удобства графического представления рассматривают отдельно модули и аргументы коэффициентов , при этом совокупность называется амплитудным спектром, а фазовым спектром сигнала. Если сигнал принимает вещественные значения, амплитудный спектр обладает свойством четности, а фазовый – свойством нечетности.

Для наглядности на графиках амплитудный и фазовый спектр совместим соответственно с модулем и аргументом спектральной плотности сигнала.

Амплитудный спектр сигнала

Фазовый спектр сигнала

· Найти автокорреляционную функцию сигнала, построить график

Одной из важных временных характеристик детерминированных сигналов, устанавливающих энергетическую связь сигнала с его сдвинутой на величину копией , является автокорреляционная функция (АКФ). Для сигналов с ограниченной областью АКФ вычисляется по формуле:

В теории сигналов также доказывается, что АКФ и энергетический спектр связаны парой преобразований Фурье:

Графически изобразим принцип метода определения АКФ. Для этого покажем степень связи (корреляции) сигнала со своей копией, сдвинутой на величину по оси времени. На данном графике можно наблюдать оригинал и копию сигнала без смещения. Затем будем смещать копию на величину (пусть )

На промежутках АКФ равна нулю:

По данным графикам сигнала и его сдвинутой копии, легко построить АКФ. Для этого необходимо посчитать площадь пересечения сигнала и его сдвинутой копии. Ясно, что функция достигнет своего максимума при , так как любой сигнал полностью коррелирован с самим собой. При этом максимальное значение корреляционной функции равно энергии сигнала. Точки для построения АКФ можно найти умозрительно, т.к. пересечения прямоугольного импульса с его сдвинутой копией представляется суммой определенных интегралов функции с амплитудой 10.

Построим график АКФ:

· Определить эффективную ширину спектра

Энергия одиночного импульса может быть вычислена либо во временной области, либо в частотной в соответствии с равенством Парсеваля:

В частотной области можно определить эффективную ширину спектра сигнала. Это такой частотный интервал, в котором сосредоточена подавляющая часть полной энергии сигнала. Обычно 90% или 95%.

Эффективную ширину спектра определим по формуле:

Для определения эффективной частоты построим график квадрата модуля спектральной плотности сигнала:

График функции

Из графика видно, что основная часть энергии сигнала сосредоточена в частотном интервале . Где — эффективная частота.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Читайте также:  Эффективные таблетки против молочницы у мужчин
Оцените статью